

1

Anti-Aliasing in Neural Rendering

Wenbo Hu

Tencent AI Lab

What is aliasing?

• Aliasing occurs when the sampling rate is below the Nyquist frequency

Factors for aliasing:

- Discrete sampling
- Sampling rate is low
- Repetitive pattern

Principles for anti-aliasing

- Area-sampling (Pre-filtering)
- Multi-sampling

Moiré pattern (摩尔纹)

Wagon wheel effect (车轮效应) 2

Aliasing in NeRF

• The aliasing in NeRF is due to the point sampling in the image plane and 3D space

Pioneer of Anti-aliased NeRF

• Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields, *Barron et al. ICCV'21* (Oral, Best Paper Honorable Mention)

Integrated Positional Encoding

Anti-Aliasing (Quality) vs. Speed

Rost paper Rinallist • Tri-MipRF: Tri-Mip Representation for Efficient Anti-Aliasing **Neural Radiance Fields**

Suffers from aliasing

Tri-MipRF

Tri-MipRF

Anti-Aliasing by Multi-sampling

• Zip-NeRF: Anti-Aliased Grid-Based Neural Radiance Fields, *Barron et al. ICCV'23* (Oral, Best Paper Finalist)

Training

Rendering

Tri-MipRF vs. Zip-NeRF

Tri-MipRF (pre-filtering)

• Pros:

- Quality-Efficiency balance
 - high-quality anti-aliasing
 - fast training (~5min) and rendering (real-time support)
- Compact plane representation
 - friendly with NN

• Cons:

- Isotropic approximation
- Weak for unbounded scenes

Zip-NeRF (multi-sampling)

• Pros:

- High-quality
 - SOTA quality for unbounded scenes
- Anisotropic anti-aliasing
 - Unify isotropic and anisotropic anti-aliasing

• Cons:

• Slow training and rendering

• Isotropic area-sampling leads to ambiguity, we need anisotropic area-sampling

• Mipmap encoding

• Ripmap encoding

Memory consumption: 1 + 1/4 + 1/16 + 1/64 + 1/256 + ... = ?4/3

Memory consumption: 4

• Mipmap vs. Ripmap encoding

(a) Isotropic area sampling

(b) Anisotropic area sampling

• Tri-plane vs. Platonic projection

(a) Projection on orthogonal tri-plane (b) Projection on an additional plane

• Rip-NeRF: Anti-aliasing Radiance Fields with Ripmap-Encoded Platonic Solids, SIGGRAPH'24

• Rip-NeRF: Anti-aliasing Radiance Fields with Ripmap-Encoded Platonic Solids

• Quantitative results on ms-Blender

				PSNR ↑				SSIM ↑			LPIPS↓						
	Train↓	Size ↓	Full Res.	1/2 Res.	1/4 Res.	1/8 Res.	Avg.	Full Res.	1/2 Res.	1/4 Res.	1/8 Res.	Avg.	Full Res.	1/2 Res.	1/4 Res.	1/8 Res	Avg.
NeRF w/o \mathcal{L}_{area}	3 days	5.00 MB	31.20	30.65	26.25	22.53	27.66	0.950	0.956	0.930	0.871	0.927	0.055	0.034	0.043	0.075	0.052
NeRF [Mildenhall et al. 2020]	3 days	5.00 MB	29.90	32.13	33.40	29.47	31.23	0.938	0.959	0.973	0.962	0.958	0.074	0.040	0.024	0.039	0.044
TensoRF [Chen et al. 2022]	19 mins	71.8 MB	32.11	33.03	30.45	26.80	30.60	0.956	0.966	0.962	0.939	0.956	0.056	0.038	0.047	0.076	0.054
Instant-NGP [Müller et al. 2022]	5 mins	64.1 MB	30.00	32.15	33.31	29.35	31.20	0.939	0.961	0.974	0.963	0.959	0.079	0.043	0.026	0.040	0.047
Mip-NeRF [Barron et al. 2021]	3 days	2.50 MB	32.63	34.34	35.47	35.60	34.51	0.958	0.970	0.979	0.983	0.973	0.047	0.026	0.017	0.012	0.026
Tri-MipRF [Hu et al. 2023]	5.5 mins	48.0 MB	33.57	35.21	35.96	36.46	35.30	0.962	0.975	0.982	0.987	0.976	0.052	0.029	0.019	0.013	0.028
Zip-NeRF [Barron et al. 2023]	4.5 hrs	592 MB	34.21	36.55	37.88	38.13	36.69	0.974	0.985	0.990	0.992	0.985	0.036	0.019	0.014	0.015	0.021
3DGS [Kerbl et al. 2023]	7.5 mins	27.0 MB	29.00	30.94	32.06	28.21	30.05	0.946	0.965	0.976	0.964	0.963	0.064	0.037	0.024	0.030	0.039
Rip-NeRF _{25k}	32 mins	160 MB	34.30	35.94	36.92	37.47	36.16	0.966	0.978	0.984	0.989	0.979	0.045	0.025	0.016	0.011	0.024
Rip-NeRF (Ours)	2.6 hrs	160 MB	35.30	37.01	38.07	38.54	37.23	0.973	0.983	0.988	0.991	0.984	0.037	0.019	0.011	0.008	0.019

Zip-NeRF	Rip-NeRF	Tri-MipRF

• Anti-Aliasing performance

• Ablations

					PSNR↑					SSIM↑			LPIPS↓					
	Train↓	Size↓	Full Res.	1/2 Res.	1/4 Res.	1/8 Res.	Avg.	Full Res.	1/2 Res.	1/4 Res.	1/8 Res.	Avg.	Full Res.	1/2 Res.	1/4 Res.	1/8 Res.	Avg.	
Rip-NeRF, PS3 (w/o PSP)	25 min	48 MB	33.42	35.00	35.81	36.28	35.14	0.961	0.974	0.981	0.986	0.976	0.053	0.030	0.020	0.013	0.029	
Rip-NeRF, PS4	25.5 min	64 MB	32.84	34.28	34.79	34.89	34.20	0.955	0.967	0.972	0.974	0.967	0.063	0.039	0.029	0.025	0.039	
Rip-NeRF, PS6	26.5 min	96 MB	33.85	35.49	36.45	36.97	35.69	0.963	0.975	0.983	0.988	0.977	0.050	0.028	0.018	0.012	0.027	
Rip-NeRF w/o RE	8.5 min	160 MB	33.64	35.26	36.13	36.68	35.43	0.962	0.974	0.981	0.987	0.976	0.052	0.030	0.020	0.013	0.029	
Rip-NeRF _{25K}	32 min	160 MB	34.30	35.94	36.92	37.47	36.16	0.966	0.978	0.984	0.989	0.979	0.045	0.025	0.016	0.011	0.024	
Rip-NeRF (ours)	2.6 h	160 MB	35.30	37.01	38.07	38.54	37.23	0.973	0.983	0.988	0.991	0.984	0.037	0.019	0.011	0.008	0.019	

- Limitations: weak for unbounded scenes
- Reasons:
 - non-vaguely-convex shapes lead to information from self-occluded locations being projected onto the same 2D area
 - space warping encourages more locations along a non-linear curve to be projected onto the same 2D area
- Potential exploration direction:
 - advanced 3D-to-2D mapping (potentially manifold-based) function

- Summary
 - Anisotropic area-sampling is crucial for the quality of anti-aliasing
 - We propose the Platonic projection and Ripmap encoding to address the anisotropy in 3D and 2D space, respectively
 - Rip-NeRF achieves SOTA quality on bounded scenes with a relative faster training and more compact memory consumption compared against Zip-NeRF

Anti-aliasing in 3DGS

- Does 3DGS suffer from aliasing? YES
- Mip-Splatting: Alias-free 3D Gaussian Splatting, *Yu et al. 2024, CVPR'24* (Oral)

Anti-aliasing in 3DGS

• Our solution: Anti-aliasing via Analytic Integration

- Analytic-Splatting: Anti-Aliased 3D Gaussian Splatting via Analytic Integration
 - Core idea: integral over the pixel footprint
 - Challenges:
 - Non-axis-aligned 2D Gaussian integration

- Analytic-Splatting: Anti-Aliased 3D Gaussian Splatting via Analytic Integration
 - Core idea: integral over the pixel footprint
 - Challenges:
 - Non-axis-aligned 2D Gaussian integration
 - Efficient analytic integration

• Comparisons among different methods

• Error amylysis

(a) Approximation errors refer- (b) Approximation errors for (c) Approximation errors of roring to different standard varia- different variable distribution. tions.

tating the integral domain by different angles in Fig. 3.

Analytic-Splatting: results

3DGS

Analytic-Splatting: results

3DGS

Ours

Analytic-Splatting: results

• MS-Mip-NeRF 360 dataset

		Р	$\mathrm{SNR}\uparrow$				\mathbf{S}	$\mathrm{SIM}\uparrow$		\downarrow LPIPS \downarrow					
	Full Res.	$^{1}/_{2}$ Res.	$^{1}/_{4}$ Res.	$^{1}/^{8}$ Res.	Avg.	Full Res.	$^{1}/_{2}$ Res.	$^{1}/_{4}$ Res.	$^{1}/_{8}$ Res.	Avg.	Full Res.	$^{1}/_{2}$ Res.	$^{1}/_{4}$ Res.	$^{1}/_{8}$ Res.	Avg.
Mip-NeRF 360 [3]	27.50	29.19	30.45	30.86	29.50	0.778	0.864	0.912	0.931	0.871	0.254	0.136	0.077	0.058	0.131
Mip-NeRF 360 $+ \mathrm{iNGP}$	26.46	27.92	27.67	25.58	26.91	0.773	0.855	0.866	0.804	0.824	0.253	0.142	0.117	0.159	0.167
Zip-NeRF [4]	28.25	30.01	31.56	32.52	30.58	0.822	0.891	0.933	0.955	0.900	0.198	0.099	0.056	0.038	0.098
3DGS [16]	26.55	28.00	28.51	27.45	27.63	0.779	0.854	0.891	0.888	0.853	0.274	0.162	0.102	0.087	0.156
3DGS-SS [16]	27.20	28.75	29.89	29.71	28.89	0.800	0.871	0.914	0.928	0.878	0.246	0.138	0.081	0.061	0.131
Mip-Splatting [36]	27.20	28.74	29.90	30.66	29.12	0.802	0.870	0.915	0.944	0.883	0.244	0.146	0.090	0.056	0.134
Ours	27.50	28.99	30.35	31.21	29.51	0.808	0.874	0.919	0.945	0.887	0.231	0.132	0.077	0.051	0.123

Beyond Anti-Aliasing

- Technologies developed in anti-aliasing are useful beyond the antialiasing, *i.e.* cases that requires integration
- BRDF integration

Inverse rendering

• Inverse Rendering of Glossy Objects via the Neural Plenoptic Function and Radiance Fields, CVPR'24

Enviromental Cones

RGB

Metallic

NeRO

Albedo

Summary

- Anti-Aliasing is crucial for the rendering quality in both NeRF and 3DGS
- Multi-sampling and Area-sampling are two main streams of strategies for anti-aliasing
- Anisotropy should be considered in the anti-aliasing
- Anti-aliasing technologies can be useful for other integrationrelated tasks

Thank You!

More resources are available on my webpage