
Tri-MipRF: Tri-Mip Representation for Efficient Anti-Aliasing
Neural Radiance Fields

Wenbo Hu1 Yuling Wang1,2 Lin Ma1 Bangbang Yang1

Lin Gao3 Xiao Liu1 Yuewen Ma1†
1PICO, ByteDance, Beijing 2Tsinghua University 3Institute of Computing Technology, CAS

Abstract

Despite the tremendous progress in neural radiance fields
(NeRF), we still face a dilemma of the trade-off between qual-
ity and efficiency, e.g., MipNeRF [3] presents fine-detailed
and anti-aliased renderings but takes days for training, while
Instant-ngp [37] can accomplish the reconstruction in a few
minutes but suffers from blurring or aliasing when render-
ing at various distances or resolutions due to ignoring the
sampling area. To this end, we propose a novel Tri-Mip
encoding (à la “mipmap”) that enables both instant recon-
struction and anti-aliased high-fidelity rendering for neural
radiance fields. The key is to factorize the pre-filtered 3D
feature spaces in three orthogonal mipmaps. In this way,
we can efficiently perform 3D area sampling by taking ad-
vantage of 2D pre-filtered feature maps, which significantly
elevates the rendering quality without sacrificing efficiency.
To cope with the novel Tri-Mip representation, we propose
a cone-casting rendering technique to efficiently sample anti-
aliased 3D features with the Tri-Mip encoding considering
both pixel imaging and observing distance. Extensive experi-
ments on both synthetic and real-world datasets demonstrate
our method achieves state-of-the-art rendering quality and
reconstruction speed while maintaining a compact represen-
tation that reduces 25% model size compared against Instant-
ngp. Code is available at the project webpage: https:
//wbhu.github.io/projects/Tri-MipRF

1. Introduction
Neural radiance field (NeRF) [35], emerged as a ground-

breaking implicit 3D representation, models the geometry
and view-dependent appearance by a multi-layer perceptron
(MLP) for rendering photo-realistic novel views. MipN-
eRF [3] further pushes the boundaries of rendering quality
by integrated position encoding to model the pre-filtered
radiance fields. Such impressive visual quality, however,
requires expensive computation in both reconstruction and
rendering stages, e.g., MipNeRF [3] takes more than three
days for the reconstruction and minutes for rendering a frame.
On the other hand, recent works proposed explicit or hybrid

†Corresponding author.

PS
N
R

NeRF

MipNeRF

TensoRF
Instant-ngp

Instant-ngp ↑!×

Plenoxels

Tri-MipRF (Ours)

10! 10" 10# 10$1
30

32

31

33

34

35

Reconstruction	time	(minutes)	in	logarithmic	scale
Figure 1. Rendering quality vs. reconstruction time on the multi-
scale Blender dataset [3]. Our Tri-MipRF achieves state-of-the-art
rendering quality while can be reconstructed efficiently, compared
with cutting-edge radiance fields methods, e.g., NeRF [35], MipN-
eRF [3], Plenoxels [14], TensoRF [9], and Instant-ngp [37]. Equip-
ping Instant-ngp with super-sampling (named Instant-ngp ↑5×)
improves the rendering quality to a certain extent but significantly
slows down the reconstruction.

representation for efficient rendering [43, 17, 56, 20, 10, 6],
or reconstruction [14, 47, 9, 37], e.g., the hash encoding [37]
greatly reduces the reconstruction time from days to minutes
and achieves real-time rendering. But all their rendering
model is flawed in point-based sampling, which would cause
the renderings excessively blurred in close-up views and
aliased in distant views. We face a dilemma of the trade-
off between quality and efficiency due to the lacking of a
representation to support efficient area sampling.

In this paper, we aim to design a radiance field represen-
tation that supports both high-fidelity anti-aliased render-
ings and efficient reconstruction. To address the aliasing
and blurring issue, super-sampling and pre-filtering (a.k.a.
area-sampling) are two popular streams of strategies in the
offline and real-time rendering literature, respectively. But
super-sampling each pixel by casting multiple rays through
its footprint significantly increases the computation cost,
and directly pre-filtering the 3D volume is also memory-
and computation-intensive, which conflicts with the goal of
efficiency. Also, it is not trivial to pre-filter the radiance
field represented with hash encoding, due to the hash col-

https://wbhu.github.io/projects/Tri-MipRF
https://wbhu.github.io/projects/Tri-MipRF

lisions. We achieve this challenging goal with our novel
Tri-Mip radiance fields (Tri-MipRF). As shown in Fig. 1, our
Tri-MipRF achieves state-of-the-art rendering quality that
presents high-fidelity details in close-up views and is free of
aliasing in distant views. Meanwhile, it can be reconstructed
super-fast, i.e., within five minutes on a single GPU, while
the super-sampling variant of hash encoding, Instant-ngp
↑5×, takes around ten minutes for the reconstruction and has
much lower rendering quality.

The key to achieving our goal is the proposed Tri-Mip
encoding, i.e., featurizing the 3D space by three 2D mip (mul-
tum in parvoto) maps. The Tri-Mip encoding first decom-
poses the 3D space into three planes (planeXY , planeXZ ,
and planeY Z) inspired by the factorization for 3D content
generation in [8], and then represent each plane by a mipmap.
It ingeniously models the pre-filtered 3D feature space by
taking advantage of different levels of the 2D mipmaps. Our
Tri-MipRF belongs to the hybrid representation since it mod-
els the radiance fields by Tri-Mip encoding and a tiny MLP,
which makes it converge fast during the reconstruction. And
the model size of our method is relatively compact since
the MLP is very shallow and the Tri-Mip encoding only re-
quires three 2D maps to store the base levels of the mipmaps.
To cope with the Tri-Mip encoding, we propose an efficient
cone-casting rendering technique that formulates the pixel
as a disc and emits a cone for each pixel. Different from
MipNeRF [3] that samples the cone with multivariate Gaus-
sian, we adopt spheres that are inscribed with the cone. The
spheres are further featurized by the Tri-Mip encoding ac-
cording to their occupied area. The reason for doing so is
that the features in mipmaps are pre-filtered isotropically.
The Tri-Mip encoding models the pre-filtered 3D feature
space while the cone-casting is adaptive to the rendering
distance and resolution, and they are effectively connected
by the occupied area of the sampling sphere, which makes
the renderings of our Tri-MipRF free of blurring in close-up
views and aliasing in distant views. Besides, we also de-
velop a hybrid volume-surface rendering strategy to enable
real-time rendering on consumer-level GPUs, e.g., 60 FPS
on an Nvidia RTX 3060 graphics card.

We extensively evaluated our Tri-MipRF on both public
benchmarks and images captured in the wild. Both quantita-
tive and qualitative results demonstrate the effectiveness of
our method for high-fidelity rendering and fast reconstruc-
tion. Our contributions are summarized below.

• We propose a novel Tri-Mip encoding to model the pre-
filtered 3D feature space by leveraging multi-level 2D
mipmaps, which enables anti-aliased volume rendering
with efficient area sampling.

• We propose a new cone-casting rendering technique that
efficiently emits a cone for each pixel while gracefully
sampling the cone with spheres on the Tri-Mip encoded
3D space.

• Our method achieves both state-of-the-art rendering
quality and reconstruction speed (within five minutes
on a single GPU), while still maintaining a compact rep-

resentation (with a 25% smaller model size than Instant-
ngp). Thanks to the hybrid volume-surface rendering
strategy, our method also achieves real-time rendering
when deploying on consumer-level devices.

2. Related Work

Anti-aliasing in rendering. Anti-aliasing is a fundamen-
tal problem in computer graphics and image processing
and has been extensively explored in the rendering com-
munity. Mathematically, aliasing is the effect of overlapping
frequency components resulting from an insufficient sam-
pling rate. Super-sampling and pre-filtering (area-sampling)
are two typical streams of approaches to reduce the alias-
ing artifacts in offline and real-time rendering algorithms,
respectively. Super-sampling anti-aliasing (SSAA) meth-
ods [15, 11, 32, 19, 51] directly increases the sampling rate
to approach the Nyquist frequency, and multi-sampling anti-
aliasing (MSAA) [1] is the de facto method supported by
modern graphics processors and APIs. Pre-filtering-based
methods [25, 39, 22, 2, 52, 23] relieve this burden by pre-
compute the filtered version of content ahead of rendering,
thus, this streams of methods are more suitable for real-time
rendering.

In the context of NeRF, super-sampling can be achieved
by casting multiple rays per pixel and aggregating rendered
results to produce the final color. This straightforward strat-
egy is useful but expensive since the computation cost grows
significantly with the sampling rate increasing. On the other
hand, recent works [3, 4, 28] introduce the pre-filtering idea
into neural radiance fields by the proposed integrated posi-
tion encoding or band-limited coordinate networks to learn
a pre-filtered representation of the scene, such that the ren-
derings of them are free of blurring in close-up views and
aliasing in distant views. However, the rendering and re-
construction of them are extremely slow, e.g., MipNeRF [3]
takes around three days to reconstruct a scene and minutes to
render a frame, which hinders the applicability. In contrast,
our Tri-MipRF can be reconstructed within five minutes and
achieves real-time rendering on the same hardware, mean-
while, our method even has better-rendering quality in both
close-up and distant views compared with MipNeRF.

Accelerating NeRF. NeRF [35] implicitly represents the
scene in the MLP, which leads to a very compact storage, but
the reconstruction and rendering of it are extremely slow. A
thread of works is devoted to speeding up the rendering, by
splitting a scene into many cells [42, 43] to reduce the infer-
ence complexity, learning to reduce samples per ray [27, 38],
or caching trained fields values [20, 17, 56, 6] to reduce the
computation in rendering. Another line of works focuses
on reducing the reconstruction time by directly optimizing
the explicit representation [14, 47], or utilizing hybrid repre-
sentations, e.g., low-rank tensor [9] and hash table [37], to
speed up the converging. Especially, hash encoding achieves
instant reconstruction in around five minutes and rendering
in real-time.

Photometric	Loss
GT Rendering

Ray	distance

𝜎

Volume	Rendering

Mipmap	𝓜𝒀𝒁

Tri-Mip Encoding

f𝑿𝒀

f𝒀𝒁

f𝑿𝒁

Concatenation
Mipmap	𝓜𝑿𝒀

(𝑥, 𝑦, 𝑙)

Level	 𝑙

𝐫𝓓𝑿𝒀
Level	⌊𝑙⌋

(𝑦, 𝑧, 𝑙)𝓓𝒀Z

Mipmap	𝓜𝑿𝒁

(𝑥, 𝑧, 𝑙)𝓓X𝑍

𝑋

𝑌

𝑍

Plane𝑋𝑌

Plane𝑋𝑍

Pl
an
e)*

Space	decomposition

Disc	𝓓𝑿𝒀

Disc	𝓓𝑿𝒁

Disc	𝓓𝒀𝒁
𝐫 (𝑥, 𝑦, 𝑧)

Density

Color

View	
direction	𝐝

Tiny	MLPCone	Casting

Pixel

Projection	
center	𝐨

Sphere	𝓢

Figure 2. Overview of our Tri-MipRF. To render a pixel, we emit a cone from the camera’s projection center to the pixel on the image plane,
and then we cast a set of spheres inside the cone, next, the spheres are orthogonally projected on the three planes and featurized by our
Tri-Mip encoding, after that the feature vector is fed into the tiny MLP to non-linearly map to density and color, finally, the density and
color of the spheres are integrated using volume rendering to produce final color for the pixel.

However, the rendering model of all the above methods
is flawed in formulating the pixel as a single point and sam-
pling with ignorance of the corresponding area, which would
cause the renderings excessively blurred in close-up views
and aliased in distant views. The super-sampling technique
mentioned above can relieve this issue but requires casting
multiple rays per pixel, which significantly increases the
reconstruction and rendering cost. And incorporating pre-
filtering with the hash encoding [37] is non-trivial due to the
hash collisions. Our method addresses this issue by the pro-
posed Tri-Mip encoding to effectively model the pre-filtered
3D feature space, which is as efficient as the hash encoding
but able to produce anti-aliased high-fidelity renderings.

Compact 2D representation for 3D content. Directly
representing 3D contents in volumes is memory- and
computation-intensive, as well as redundant since 3D con-
tents are always sparse. Peng et al. [41] propose to project
features of point cloud to multiple planes for 3D geometry
reconstruction. And recent works [21, 54, 55] have demon-
strated that 3D content can be compactly represented in 2D
images with faithful restoration. In the context of genera-
tive models, EG3D [8] proposed a tri-plane representation
to decompose 3D volume into three 2D planes for 3D con-
tent generation, and this representation is adopted in many
follow-up generative methods [16, 44, 45, 48, 5, 53, 12]. Be-
sides, this representation is further generalized into 4D space
to model dynamic scenes [7, 13]. Our Tri-Mip encoding is
inspired by this line of works, but none of the above repre-
sentations can realize our goal, i.e., modeling the pre-filtered
3D feature space for efficient area sampling.

3. Method
3.1. Overview

Given a set of calibrated multi-view images of static
scenes, our goal is to efficiently reconstruct the radiance
fields that can be further rendered into anti-aliased high-
fidelity images. The rendering of radiance fields is performed
one pixel at a time, so we describe the rendering procedure of
a pixel of interest here, as shown in Fig. 2. We formulate the
pixel as a disc on the image plane and perform cone casting
for each pixel, rather than ray casting that ignores the area of

a pixel. The cone casting emits a cone C from the projection
center of the camera to the pixel disc on the image plane, and
samples the cone with a set of spheres S that are inscribed
with the cone. Further, we featurize the spheres to feature
vectors f by our proposed Tri-Mip encoding that is parame-
terized by three mipmaps M. This is the key to making our
renderings contain fine-grained details in close-up views and
free of aliasing in distant views, since the Tri-Mip encoding
effectively models the pre-filtered 3D feature space by taking
advantage of different levels in the mipmap. Then, we em-
ploy a tiny MLP parameterized by weights Θ to non-linearly
map the feature vector f of spheres S and view direction d
to density τ and color c of the spheres,

[τ, c] = MLP(f ,d; Θ). (1)

Finally, the estimated densities and colors of spheres inside a
cone are used to approximate the volume rendering integral
by numerical quadrature as in [33] to render the final color
of the pixel corresponding to the cone:

C(t,d,Θ,M) =
∑
i

Ti(1− exp(−τi(ti+1 − ti)))ci,

with Ti = exp

(
−
∑
k<i

τk(tk+1 − tk)

)
, (2)

where t is the distance between the sampled spheres and
the projection center of the camera. During training, the
photometric loss will be computed between the rendered
colors and captured colors to back-propagate gradients to the
weights Θ of MLP and parameters M of Tri-Mip encoding
to jointly optimize them.

In the following sections, we will present the cone casting,
Tri-Mip encoding, as well as the hybrid volume-surface
rendering in detail, while omitting the procedures of tiny
MLP and volume rendering as they are similar to the original
NeRF [35]. Please refer to the supplemental material for
more details.

3.2. Cone Casting
NeRF renders a pixel by emitting a ray r(t) = o + td,

and sampling points x along the ray, a.k.a. ray casting, as

shown in Fig. 3 (a). And the points x are further featurized
by position encoding (PE) γ to produce the feature vectors
for the points γ(x). This formulation models the pixel as a
single point while ignoring the area of the pixel, which is
quite different from the real-world imaging sensors. Most
NeRF works [47, 56, 14, 9, 10], including instant-ngp [37],
followed this formulation. It can approximate the real-world
case when the captured/rendered views are at a roughly con-
stant distance but will lead to obvious artifacts when viewing
at very different distances, e.g., blurring in close-up views
and aliasing in distant views since the sampling is distance-
agnostic. To this end, MipNeRF emits a cone for each pixel
and samples the cone by the multivariate Gaussian, which
is further featurized by integrated position encoding (IPE).
The IPE is derived by the integral E[γ(x)] over the PE of
the points within the Gaussian, as shown in Fig. 3 (b). This
strategy, however, is not trivial to be extended to explicit or
hybrid representations for efficient reconstruction and ren-
dering, e.g., hash encoding [37], since IPE is the integral of
coordinate-based positional encoding, which is not compati-
ble with explicit or hybrid volumetric feature encoding.

In contrast, our efficient cone-casting strategy can effi-
ciently work with our Tri-Mip encoding for area sampling
during the volume rendering. As shown in Fig. 3 (c), we
formulate the pixel as a disc on the image plane rather than a
single point that ignores the area of a pixel. The radius of the
disc can be calculated by ṙ =

√
∆x·∆y/π, where ∆x and ∆y

are the width and height of the pixel in world coordinates that
can be derived from the calibrated camera parameters. For
each pixel, we emit a cone C from the camera’s projection
center o along the direction d = po − o, where po is the
pixel’s center. The apex of the cone is located at the optical
center of the camera and the intersection between the cone
and the image plane is the disc corresponding to the pixel.
We can derive the central axis of the cone as a(t) = o+ td.
To sample the cone, we cannot follow MipNeRF [3] to use
the multivariate Gaussian, since the multivariate Gaussian
is anisotropic but the pre-filtering in our Tri-Mip encoding
is isotropic. Thus, we sample the cone with a set of spheres
S(x, r) parameterized by their centers x and radiuses r.
The centers x are located at the central axis of the cone and
the radiuses r are set to make the spheres inscribed with the
cone, which can be written as:

x = o+ td ,

r =
∥x− o∥2 · f ṙ

∥d∥2 ·

√(√
∥d∥22 − f2 − ṙ

)2

+ f2,

(3)

where f is the focal length. Based on Eq. 3, the sampling
spheres S(x, r) can be determined by a sorted distance
vector ti ∈ t, since the center location xi and radius ri of
a sphere Si is the function of the distance ti. We uniformly
sample ti ∈ t between the camera’s predefined near tn and
far tf planes or the two intersections between the central
axis of the cone and the axis-aligned bounding-box (AABB)

Con
e !

(C)	Tri-MipRF (Ours)

!

Pixel

(a)	NeRF

(b)	MipNeRF! !

Pixel

Pixel

" #
= %

+ #'
((*)

E[(*]

"̇

'

Central axis: a # = % + #'

#
$

Sphere /(*, ")

'

Figure 3. NeRF [35] renders a pixel by ray-casting and the sampling
points x on the ray are featurized by position encoding γ(x). Mip-
NeRF [3] emits a cone for each pixel and featurize the sampling
multivariate Gaussian by integrated position encoding E[γ(x)].
Our Tri-MipRF renders a pixel by cone casting and the cone is
sampled by a set of spheres that are inscribed with the cone.

of the interested 3D space. To further speed up the cone
casting by utilizing the sparsity of the 3D space, we employ
a binary occupancy grid that coarsely marks empty vs. non-
empty space similar to [37, 26], such that we can cheaply
skip samples in the empty area and concentrate samples near
surfaces to avoid wasted computation.

3.3. Tri-Mip Encoding
To realize our goal, i.e. rendering fine-grained details in

close-up views and avoiding aliasing in distant views while
maintaining the reconstruction and rendering efficiency, we
should constructively featurize the sampled spheres S(x, r)
according to their occupied area, which shares similar mo-
tivation of area-sampling (a.k.a. pre-filtering) in computer
graphics. Hash encoding proposed in instant-ngp [37] can
efficiently featurize the sampled points by looking up the
hash table and trilinear interpolation, however, it cannot
be easily extended to featurize the spheres S(x, r). One
plausible workaround is to incorporate the super-sampling
strategy with hash encoding to approximate the featurization
of spheres. However, super-sampling significantly increases
the computation cost, which unexpectedly sacrifices the abil-
ity of efficient reconstruction and rendering.

To this end, we propose a novel Tri-Mip encoding pa-
rameterized by three trainable mipmaps M to featurize the
sampling spheres S(x, r):

f = Tri-Mip(x, r; M),

M = {MXY ,MXZ ,MY Z}.
(4)

As shown in Fig. 2, the Tri-Mip encoding decomposes
the 3D space into three planes (planeXY , planeXZ , and
planeY Z) using orthographic projection, and then repre-
sent each plane by a mipmap (MXY , MXZ , and MY Z)
to model the pre-filtered feature space. For each mipmap,
the base level ML0 is a feature map with the shape of
H × W × C, where H,W,C are the height, width, and
number of channels, respectively. The base level ML0 is

randomly initialized and can be trained during the recon-
struction, and other levels (MLi , i = 1, 2, ..., N) are derived
from the previous level MLi−1 by downscaling 2× along
the height and width. This pre-filtering strategy maintains
consistency among the levels of mipmap, which is the key
to making the reconstructed objects coherent at different
distances.

To query the feature vectors f corresponding to the
spheres S(x, r), we first orthogonally project S on the
three planes to obtain three discs D = {DXY ,DXZ ,DY Z},
as shown in Fig. 2. For each disc, we query a feature vec-
tor from the corresponding mipmap. Take disc DXY as an
example, we query its feature fXY from the mipmap MXY .
Based on the property of orthogonal projection, the disc
DXY shares the same radius r as the sampled sphere, and
the 2D coordinate of the DXY ’s center xDXY

is the partial
coordinate (x, y) of the sampled sphere’s center x(x, y, z).
For the disc DXY ’s query level l of the mipmap MXY , we
assign it to:

l = log2

(
r

r̈

)
,

r̈ =

√
(Bmax − Bmin)X · (Bmax − Bmin)Y

HW · π
,

(5)

where r̈ is the radius of the feature elements in the base
level of the mipmap ML0 , Bmax and Bmin are the maxi-
mum and minimum corners of the Axis Aligned Bounding
Box (AABB) of the interested 3D space, respectively. The
motivation of Eq. 5 is to match the sphere’s radius r with
the feature elements’ radius in a certain level of the mipmap
Ml

XY . After obtaining the query coordinate (x, y, l), we
can get the feature vector fXY from the mipmap MXY by
the trilinear interpolation. As shown in Fig. 2, we first find
the two nearest levels of the mipmap M⌊l⌋

XY and M⌈l⌉
XY ; and

then we project the center coordinate (x, y) of the disc DXY

to the two levels of the mipmap (shown as red dots); next,
we find four neighbors of them (shown as orange dots), re-
spectively; finally, we interpolate the eight neighbors based
on their distance to the center of the disc DXY to produce
the feature vector fXY . The trilinear interpolation increases
the effective precision of both levels and spatial resolutions,
also, it yields a continuous encoding space that is benefi-
cial for efficient training. Similarly, we can get the feature
vectors fXZ and fY Z for the disc DXZ and DY Z , respec-
tively. The final queried feature vector f for the sampled
sphere S is a concatenation of the three discs’ feature vectors
{fXY , fXZ , fY Z}.

Our Tri-Mip encoding effectively featurize the 3D space
in a pre-filtered way, such that we can perform area-sampling
for the volume rendering to produce high-quality renderings
that are free of aliasing. And the feature query process is also
efficient, i.e., querying mipmap has been highly optimized in
modern GPUs, which promotes fast reconstruction. Besides,
the storage of our Tri-Mip encoding is three 2D feature
maps, i.e. the base levels of the three mipmaps Ml0 as other
levels are derived by the base level by downscaling, which

Proxy	mesh
!

Hit	point

2Δ!

Tri-MipRF NeuS Instant-ngp
(a)	Proxy	mesh	

(b)	Hybrid	volume-surface	rendering	

Figure 4. Visual comparison of the proxy mesh produced by our
Tri-MipRF, Instant-ngp [37], and NeuS [49] (a); and our proposed
hybrid volume-surface real-time rendering strategy (b).

makes our model compact enough for easy distribution. Note
that, Tri-Mip encoding also promotes the training converges
faster than implicitly representing the scene in MLP, e.g.,
our method only takes 25K iterations to converge while
MipNeRF [3] requires 1M iterations, since features in the
mipmap M can be optimized directly rather than mapped
from the IPE by optimizable weights of MLP.

3.4. Hybrid Volume-Surface Rendering
Though our method can efficiently reconstruct the radi-

ance fields, directly rendering it on consumer-level GPUs,
e.g., an Nvidia RTX 3060 graphics card, only achieves
around 30 FPS. This is because the volume rendering in-
herently samples multiple spheres inside the cone for each
pixel, though we can skip some samples by the binary occu-
pancy grid. Observing the real-time surface rendering ben-
efited from the efficient rasterization of the polygon mesh,
we develop a hybrid volume-surface rendering strategy to
further boost the rendering speed. Besides the reconstructed
radiance field, our hybrid volume-surface rendering strat-
egy requires a proxy mesh to efficiently determine a rough
distance from the camera’s optical center to the object. Fortu-
nately, we can obtain the proxy mesh by marching cubes [30]
on the reconstructed density field followed by mesh decima-
tion. The proxy mesh produced by our Tri-MipRF presents
high-fidelity quality even in complicated structure details, as
shown in the left-hand side of Fig. 4 (a), while the results
produced by Instant-ngp [37] and NeuS [49] are shown in
the right-hand side as references.

Once the proxy mesh is available, we first efficiently
rasterize it to obtain the hit point (shown as a blue dot) on
the surface for the central axis of the cone, as shown in
Fig. 4 (b), then we uniformly sample spheres within the
distance of ∆t from the hit point in the central axis of the
cone, which yields a 2∆t sampling interval. This hybrid
volume-surface rendering strategy significantly reduces the

PSNR ↑ SSIM ↑ LPIPS ↓
Train. ↓ Full Res. 1/2 Res. 1/4 Res. 1/8 Res. Avg. Full Res. 1/2 Res. 1/4 Res. 1/8 Res. Avg. Full Res. 1/2 Res. 1/4 Res. 1/8 Res Avg.

NeRF w/o Larea 3 days 31.20 30.65 26.25 22.53 27.66 0.950 0.956 0.930 0.871 0.927 0.055 0.034 0.043 0.075 0.052
NeRF [35] 3 days 29.90 32.13 33.40 29.47 31.23 0.938 0.959 0.973 0.962 0.958 0.074 0.040 0.024 0.039 0.044
MipNeRF [3] 3 days 32.63 34.34 35.47 35.60 34.51 0.958 0.970 0.979 0.983 0.973 0.047 0.026 0.017 0.012 0.026
Plenoxels [14] 9 min 31.60 32.85 30.26 26.63 30.34 0.956 0.967 0.961 0.936 0.955 0.052 0.032 0.045 0.077 0.051
TensoRF [9] 19 min 32.11 33.03 30.45 26.80 30.60 0.956 0.966 0.962 0.939 0.956 0.056 0.038 0.047 0.076 0.054
Instant-ngp [37] 5 min 30.00 32.15 33.31 29.35 31.20 0.939 0.961 0.974 0.963 0.959 0.079 0.043 0.026 0.040 0.047
Instant-ngp ↑5× 10 min 30.96 32.87 33.10 30.82 31.94 0.945 0.965 0.973 0.970 0.963 0.070 0.038 0.025 0.029 0.041
Tri-MipRF w/o M 4.5 min 30.25 32.52 33.73 29.44 31.48 0.938 0.961 0.975 0.964 0.959 0.081 0.045 0.026 0.039 0.048
Tri-MipRF (Ours) 5 min 33.32 35.02 35.78 36.13 35.06 0.961 0.974 0.981 0.986 0.976 0.043 0.024 0.017 0.011 0.024

Table 1. Quantitive comparison of our Tri-MipRF against several cutting-edge methods and their variants on the multi-scale Blender dataset.

number of samples, thus, enabling real-time rendering (>60
FPS) on consumer-level GPUs. Please refer to the video
in the supplemental material for the real-time interactive
rendering demo.

4. Experimental Evaluation
4.1. Implementation

Our Tri-Mip radiance fields (Tri-MipRF) learns the 3D
structure solely from the calibrated multi-view 2D images
and is trained with the photometric metric loss between the
rendered pixels and the captured ones. Following MipN-
eRF [3], we scale the loss of each pixel by the area of its
footprint on the image plane, noted as “area loss Larea”. We
implement our Tri-MipR using PyTorch [40] framework
with tiny-cuda-nn [36] extension. The mipmap query pro-
cess is well optimized in the rendering community for texture
sampling, thus, we employ the nvdiffrast [24] library to im-
plement our Tri-Mip encoding efficiently. The shape of
the base level of the mipmap Ml0 in Tri-Mip encoding is
empirically set to H = 512,W = 512, C = 16, which is
a compact representation for the scene. We train our Tri-
MipRF using the AdamW optimizer [31] for 25K iterations
with the weight decay set to 1× 10−5 and the learning rate
set to 2× 10−3 and scheduled by MultiStepLR in PyTorch.
Note, the learning rate for the Tri-Mip encoding is further
scaled up 10× since the parameter M of Tri-Mip encoding
directly represents the scene while that for tiny MLP keeps
unchanged.

4.2. Evaluation on the Multi-scale Blender Dataset
The Blender dataset presented in the original NeRF [35]

is a synthetic dataset where all training and testing images
observe the scene content from a roughly constant distance,
which is very different from real-world captures. MipN-
eRF [3] presents a multi-scale Blender dataset to better
probe the reconstruction accuracy and anti-aliasing on multi-
resolution scenes. It is compiled by downscaling the original
dataset with a factor of 2, 4, and 8, and combining them
together. Due to the nature of projecting geometry, this is al-
most equivalent with re-rendering the original dataset where
the distance to the camera has been increased by scale factors
of 2, 4, and 8.

Quantitative results. We compared our Tri-MipRF with
several cutting-edge methods, i.e., NeRF [35], MipNeRF [3],

Plenoxels [14], TensoRF [9], and Instant-ngp [37]. Fol-
lowing previous works, we report three metrics: PSNR,
SSIM [50], and VGG LPIPS [57], as shown in Tab. 1. We
also report the rough reconstruction time on the same hard-
ware, i.e. a single Nvidia A100 GPU. Except for MipNeRF,
other comparison methods are not designed for multi-scale
captures or imaging at various distances, thus, we equipped
all of them with the aforementioned area loss Larea by de-
fault, which yields a better performance as evidenced by
comparing the results of “NeRF w/o Larea” and “NeRF”.
From Tab. 1, we can see that MipNeRF presents high-quality
renderings, however, the reconstruction of it is extremely
slow (up to around three days) which greatly prevents the
applicability. Besides, the reconstruction times of Plenox-
els, TensoRF, and Instant-ngp are greatly faster than that of
MipNeRF, but the rendering qualities are unsatisfactory no
matter in terms of PSNR, SSIM, or LPIPS. For Instant-ngp,
we further design a super-sampling variant of it, Instant-ngp
↑5×, which means casting five rays in the quincunx sample
pattern for each pixel and aggregating the samples in these
rays. We can find that super-sampling makes it render higher-
quality images, however, super-sampling also significantly
increases the reconstruction time from five to ten minutes.
In contrast, our Tri-MipRF not only produces the highest-
quality renderings for all four types of resolutions but also
can be reconstructed super-fast, i.e. 5 minutes. To verify the
effectiveness of the Tri-Mip encoding, we also evaluate an
ablation of our method, Tri-MipRF w/o M, that replaces the
three mipmaps with three 2D feature maps with the same
shape as the base level of the mipmap. As shown in Tab. 1,
the Tri-MipRF w/o M performs comparable with Instant-
ngp but significantly worse than our full method, Tri-MipRF,
even though it can be reconstructed slightly faster than Tri-
MipRF since it gets rid of the mipmap query procedure.
These quantitative comparisons demonstrate the effective-
ness of our Tri-Mip encoding and cone casting, such that
our Tri-MipRF can effectively model the pre-filtered 3D fea-
ture space and efficiently perform area sampling on it for
anti-aliased high-fidelity rendering.

Qualitative results. We further qualitatively compared our
Tri-MipRF with the Instant-ngp [37] and its super-sapling
variant, Instant-ngp ↑5×, since their reconstruction speed is
similar to ours, i.e., five minutes for our Tri-MipRF, five and
ten minutes for Instant-ngp and Instant-ngp ↑5×, respectively.
In Fig. 5, we show examples of full-resolution renderings

30.88/0.951 32.05/0.960 36.70/0.981

29.19/0.936 30.90/0.958 33.73/0.977

Ground	Truth Instant-ngp Instant-ngp ↑!× Tri-MipRF
27.71/0.864 28.71/0.875 30.53/0.896

31.61/0.973 33.45/0.979 37.05/0.991

Figure 5. Qualitative comparison of the full-resolution (close-up views) renderings on the multi-scale Blender dataset. PSNR/SSIM values
are shown at the bottom of each result.

29.64/0.977 31.80/0.986 40.88/0.997

Ground	TruthTri-MipRFInstant-ngp ↑!×Instant-ngp
Figure 6. Qualitative comparison of the low-resolution renderings
(distant view) on the multi-scale Blender dataset. PSNR/SSIM
values are shown in the bottom right corners of each result.

that can be treated as close-up views. we can see that the
results of Instant-ngp suffer from blurriness for structure
and texture details, Instant-ngp ↑5× improves the quality but
significantly increases the reconstruction time. In contrast,
our method faithfully renders the fine-grained details while
keeping the reconstruction super-fast. On the other hand,
we compare the renderings of 1/8 resolution that can simu-
late the distant views in Fig. 6. We can see renderings of
Instant-ngp exhibit severe aliasing and “jaggies” artifacts
and Instant-ngp ↑5× slightly relieves this issue, while our

Tri-MipRF faithfully renders smooth appearance and fine-
grained structure details, thanks to the Tri-Mip encoding
that efficiently models the pre-filtered 3D feature space. We
highly recommend readers to watch the supplemental video
to better evaluate the anti-aliasing feature.

4.3. Evaluation on the Single-scale Blender Dataset

The easier single-scale Blender dataset captures images
at a roughly constant distance, which is friendly to the point-
sampling-based methods, e.g., NeRF [35], Plenoxels [14],
TensoRF [9], Instant-ngp [37], and etc. We also compared
our Tri-MipRF with multiple cutting-edge methods on this
dataset, as shown in Tab. 2. We can see that our Tri-MipRF
still outperforms all of them no matter in terms of PSNR,
SSIM, or LPIPS, in the meanwhile, achieving the fastest
reconstruction together with Instant-ngp. Besides, we also
report the model size, i.e. the storage consumption, in Tab. 2.
We can find that the implicit methods have extremely small
model sizes, e.g., the model size of NeRF and MipNeRF is
5.00 MB and 2.50 MB, respectively, but are reconstructed

Novel	view	⋕1 Novel	view	⋕2 Novel	view	⋕3

Ground	Truth

40.05/0.991 42.08/0.990 41.29/0.988

Ground	Truth Ground	Truth

45.88/0.994 44.62/0.992 44.02/0.987

Ground	Truth Ground	Truth Ground	Truth

41.74/0.983 39.97/0.976 40.91/0.967

Ground	Truth Ground	Truth Ground	Truth

Br
av
e	
tr
oo
ps

Ta
ng
er
in
e

Pl
us
h	
do
g

Figure 7. Example rendering results of our method from in-the-wild captures. The PSNR/SSIM values are shown below the renderings of
our method.

PSNR ↑ SSIM ↑ LPIPS ↓ # Size ↓
SRN [46] 22.26 0.846 0.170 -
LLFF [34] 24.88 0.911 0.114 -
Neural Volumes [29] 26.05 0.893 0.160 -
Plenoxels [14] 31.71 0.958 0.049 778 MB
NeRF [35] 31.74 0.953 0.050 5.00 MB
DVGO [47] 31.95 0.957 0.053 612 MB
MipNeRF [3] 33.09 0.961 0.043 2.50 MB
TensoRF [9] 33.14 0.963 0.047 71.8 MB
Instant-ngp [37] 33.18 0.963 0.045 64.1 MB
Tri-MipRF 33.65 0.963 0.042 48.2 MB

Table 2. Results on the single-scale Blender dataset of our Tri-
MipRF and several cutting-edge methods.

very slowly (∼ 3 days); the model sizes of explicit methods,
e.g., Plenoxels and DVGO, are very large (> 500 MB); and
the hybrid methods, e.g., Instant-ngp, TensoRF, and our Tri-
MipRF, have relative small model size (< 100 MB) while
our Tri-MipRF has the smallest model size (48.2 MB) in the
hybrid methods, which reduces 25% storage consumption
compared against Instant-ngp. Please refer to the supplemen-
tal materials for more detailed statistics.

4.4. Applicability on the In-the-wild Captures

To further demonstrate the applicability of our method,
we captured several objects in the wild. We performed SFM
on the sequence to estimate the camera’s intrinsic and ex-
trinsic parameters and employed multi-view segmentation
methods to separate the object from the background scenes.
Each captures contain 200 ∼ 300 images with the resolu-
tion of 1200× 800, and we uniformly sample 70% of them
for the reconstruction and the remains are used for evalu-
ation. We show three example results in Fig. 7, where we

can see the rendered novel views faithfully reproduce the
detailed structures and appearances, and the PSNR/SSIM
values marked below the images also evidence the applica-
bility of our method. Interestingly, we find our renderings
even have “better” details than the ground truth in some
cases, e.g., the brave troops’ eyebrow shown in the blow-up
figure of the novel view #1 in the first line of Fig. 7. This
is because the ground truth, i.e. the captured image by the
camera in the wild, may suffer from motion blur artifacts
due to the fast movements, while this issue is relieved during
the reconstruction by fusing multiple observations.

5. Conclusion
In this work, we propose a Tri-Mip radiance fields, Tri-

MipRF, to make the renderings contain fine-grained details
in close-up views and free of aliasing in distant views while
maintaining efficient reconstruction, i.e. within five minutes,
and compact representation, i.e. 25% smaller model size
than Instant-ngp. This is realized by our novel Tri-Mip en-
coding and cone casting. The Tri-Mip encoding featurizes
the 3D space by three mipmaps to model the pre-filtered 3D
feature space, such that the sample spheres from the cone
casting can be encoded in an area-sampling manner. We
also develop a hybrid volume-surface rendering strategy to
enable real-time rendering (> 60 FPS) on consumer-level
devices. Extensive quantitative and qualitative experiments
demonstrate our Tri-MipRF achieves state-of-the-art render-
ing quality while having a super-fast reconstruction speed.
Also, the reconstruction results on the in-the-wild captures
demonstrate the applicability of our Tri-MipRF.

References
[1] Kurt Akeley. Reality engine graphics. In Conference on

Computer graphics and interactive techniques, 1993. 2
[2] Tomas Akenine-Moller, Eric Haines, and Naty Hoffman.

Real-time rendering. AK Peters/crc Press, 2019. 2
[3] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter

Hedman, Ricardo Martin-Brualla, and Pratul P Srinivasan.
Mip-nerf: A multiscale representation for anti-aliasing neural
radiance fields. In ICCV, 2021. 1, 2, 4, 5, 6, 8, 11, 12, 13

[4] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P
Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded
anti-aliased neural radiance fields. In CVPR, 2022. 2

[5] Miguel Angel Bautista, Pengsheng Guo, Samira Abnar, Wal-
ter Talbott, Alexander Toshev, Zhuoyuan Chen, Laurent Dinh,
Shuangfei Zhai, Hanlin Goh, Daniel Ulbricht, Afshin De-
hghan, and Josh Susskind. Gaudi: A neural architect for
immersive 3d scene generation. arXiv, 2022. 3

[6] Aljaž Božič, Denis Gladkov, Luke Doukakis, and Christoph
Lassner. Neural assets: Volumetric object capture and
rendering for interactive environments. arXiv preprint
arXiv:2212.06125, 2022. 1, 2

[7] Ang Cao and Justin Johnson. Hexplane: a fast representation
for dynamic scenes. arXiv preprint arXiv:2301.09632, 2023.
3

[8] Eric R Chan, Connor Z Lin, Matthew A Chan, Koki Nagano,
Boxiao Pan, Shalini De Mello, Orazio Gallo, Leonidas J
Guibas, Jonathan Tremblay, Sameh Khamis, et al. Efficient
geometry-aware 3d generative adversarial networks. In CVPR,
2022. 2, 3

[9] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. In ECCV, 2022.
1, 2, 4, 6, 7, 8, 11, 12, 13

[10] Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and An-
drea Tagliasacchi. Mobilenerf: Exploiting the polygon raster-
ization pipeline for efficient neural field rendering on mobile
architectures. arXiv preprint arXiv:2208.00277, 2022. 1, 4

[11] Michael Deering, Stephanie Winner, Bic Schediwy, Chris
Duffy, and Neil Hunt. The triangle processor and normal
vector shader: a vlsi system for high performance graphics.
ACM SIGGRAPH Computer Graphics, 22(4):21–30, 1988. 2

[12] Kangle Deng, Gengshan Yang, Deva Ramanan, and Jun-Yan
Zhu. 3d-aware conditional image synthesis. arXiv, 2023. 3

[13] Sara Fridovich-Keil, Giacomo Meanti, Frederik Warburg,
Benjamin Recht, and Angjoo Kanazawa. K-planes: Explicit
radiance fields in space, time, and appearance. arXiv preprint
arXiv:2301.10241, 2023. 3

[14] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance fields without neural networks. In CVPR, 2022. 1,
2, 4, 6, 7, 8, 11, 12, 13

[15] Henry Fuchs, Jack Goldfeather, Jeff P Hultquist, Susan Spach,
John D Austin, Frederick P Brooks Jr, John G Eyles, and John
Poulton. Fast spheres, shadows, textures, transparencies, and
imgage enhancements in pixel-planes. ACM SIGGRAPH
Computer Graphics, 19(3):111–120, 1985. 2

[16] Jun Gao, Tianchang Shen, Zian Wang, Wenzheng Chen,
Kangxue Yin, Daiqing Li, Or Litany, Zan Gojcic, and Sanja
Fidler. Get3d: A generative model of high quality 3d textured
shapes learned from images. In NeurIPS, 2022. 3

[17] Stephan J Garbin, Marek Kowalski, Matthew Johnson, Jamie
Shotton, and Julien Valentin. Fastnerf: High-fidelity neural
rendering at 200fps. In ICCV, 2021. 1, 2

[18] Xavier Glorot and Yoshua Bengio. Understanding the diffi-
culty of training deep feedforward neural networks. In Inter-
national Conference on Artificial Intelligence and Statistics,
2010. 11

[19] Paul Haeberli and Kurt Akeley. The accumulation buffer:
Hardware support for high-quality rendering. ACM SIG-
GRAPH Computer Graphics, 24(4):309–318, 1990. 2

[20] Peter Hedman, Pratul P Srinivasan, Ben Mildenhall,
Jonathan T Barron, and Paul Debevec. Baking neural ra-
diance fields for real-time view synthesis. In ICCV, 2021. 1,
2

[21] Wenbo Hu, Menghan Xia, Chi-Wing Fu, and Tien-Tsin Wong.
Mononizing binocular videos. TOG, 39(6):228:1–228:16,
December 2020. 3

[22] Anton S Kaplanyan, Stephan Hill, Anjul Patney, and Aaron E
Lefohn. Filtering distributions of normals for shading an-
tialiasing. 2016. 2

[23] Alexandr Kuznetsov. Neumip: Multi-resolution neural mate-
rials. TOG, 40(4), 2021. 2

[24] Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol,
Jaakko Lehtinen, and Timo Aila. Modular primitives for
high-performance differentiable rendering. TOG, 39(6), 2020.
6

[25] William J Leler. Human vision, anti-aliasing, and the cheap
4000 line display. SIGGRAPH, 14(3):308–313, 1980. 2

[26] Ruilong Li, Matthew Tancik, and Angjoo Kanazawa. Ner-
facc: A general nerf accleration toolbox. arXiv preprint
arXiv:2210.04847, 2022. 4

[27] David B Lindell, Julien NP Martel, and Gordon Wetzstein.
Autoint: Automatic integration for fast neural volume render-
ing. In CVPR, 2021. 2

[28] David B Lindell, Dave Van Veen, Jeong Joon Park, and Gor-
don Wetzstein. Bacon: Band-limited coordinate networks for
multiscale scene representation. In CVPR, 2022. 2

[29] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel
Schwartz, Andreas Lehrmann, and Yaser Sheikh. Neural
volumes: Learning dynamic renderable volumes from images.
TOG, 38(4):65:1–65:14, 2019. 8, 13

[30] William E Lorensen and Harvey E Cline. Marching cubes:
A high resolution 3d surface construction algorithm. TOG,
21(4):163–169, 1987. 5

[31] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In ICLR, 2019. 6, 11

[32] Abraham Mammen. Transparency and antialiasing algorithms
implemented with the virtual pixel maps technique. IEEE
Computer Graphics and Applications, 9(4):43–55, 1989. 2

[33] Nelson Max. Optical models for direct volume rendering.
TVCG, 1(2):99–108, 1995. 3

[34] Ben Mildenhall, Pratul P Srinivasan, Rodrigo Ortiz-Cayon,
Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and
Abhishek Kar. Local light field fusion: Practical view synthe-
sis with prescriptive sampling guidelines. TOG, 38(4):1–14,
2019. 8, 13

[35] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view synthe-
sis. In ECCV, 2020. 1, 2, 3, 4, 6, 7, 8, 11, 12, 13

[36] Thomas Müller. tiny-cuda-nn, 4 2021. 6
[37] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-

der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. TOG, 41(4):1–15, 2022. 1, 2, 3, 4, 5,
6, 7, 8, 11, 12, 13, 16, 17

[38] Thomas Neff, Pascal Stadlbauer, Mathias Parger, Andreas
Kurz, Joerg H Mueller, Chakravarty R Alla Chaitanya, Anton
Kaplanyan, and Markus Steinberger. Donerf: Towards real-
time rendering of compact neural radiance fields using depth
oracle networks. 40(4):45–59, 2021. 2

[39] Marc Olano and Dan Baker. Lean mapping. In ACM SIG-
GRAPH symposium on Interactive 3D Graphics and Games,
2010. 2

[40] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library. In
NeurIPS, 2019. 6

[41] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc
Pollefeys, and Andreas Geiger. Convolutional occupancy
networks. In ECCV, 2020. 3

[42] Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li,
Kwang Moo Yi, and Andrea Tagliasacchi. Derf: Decom-
posed radiance fields. In CVPR, 2021. 2

[43] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas
Geiger. Kilonerf: Speeding up neural radiance fields with
thousands of tiny mlps. In ICCV, 2021. 1, 2

[44] J Ryan Shue, Eric Ryan Chan, Ryan Po, Zachary Ankner,
Jiajun Wu, and Gordon Wetzstein. 3d neural field generation
using triplane diffusion. arXiv preprint arXiv:2211.16677,
2022. 3

[45] Uriel Singer, Shelly Sheynin, Adam Polyak, Oron Ashual,
Iurii Makarov, Filippos Kokkinos, Naman Goyal, Andrea
Vedaldi, Devi Parikh, Justin Johnson, and Yaniv Taigman.
Text-to-4d dynamic scene generation. arXiv:2301.11280,
2023. 3

[46] Vincent Sitzmann, Michael Zollhoefer, and Gordon Wetzstein.
Scene representation networks: Continuous 3D-structure-
aware neural scene representations. 2019. 8, 13

[47] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel
grid optimization: Super-fast convergence for radiance fields
reconstruction. In CVPR, 2022. 1, 2, 4, 8, 13

[48] Jingxiang Sun, Xuan Wang, Yichun Shi, Lizhen Wang, Jue
Wang, and Yebin Liu. Ide-3d: Interactive disentangled editing
for high-resolution 3d-aware portrait synthesis. TOG, 41(6):1–
10, 2022. 3

[49] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku
Komura, and Wenping Wang. Neus: Learning neural implicit
surfaces by volume rendering for multi-view reconstruction.
NeurIPS, 2021. 5

[50] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P
Simoncelli. Image quality assessment: from error visibility
to structural similarity. TIP, 13(4):600–612, 2004. 6

[51] Turner Whitted. An improved illumination model for shaded
display. In ACM Siggraph 2005 Courses, pages 4–es. 2005. 2

[52] Lifan Wu, Shuang Zhao, Ling-Qi Yan, and Ravi Ramamoorthi.
Accurate appearance preserving prefiltering for rendering
displacement-mapped surfaces. TOG, 38(4):1–14, 2019. 2

[53] Rundi Wu and Changxi Zheng. Learning to generate 3d
shapes from a single example. TOG, 41(6), 2022. 3

[54] Yue Wu, Guotao Meng, and Qifeng Chen. Embedding novel
views in a single jpeg image. In ICCV, 2021. 3

[55] Menghan Xia, Jose Echevarria, Minshan Xie, and Tien-Tsin
Wong. Lf2mv: Learning an editable meta-view towards light
field representation. TVCG, 2022. 3

[56] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and
Angjoo Kanazawa. Plenoctrees for real-time rendering of
neural radiance fields. In ICCV, 2021. 1, 2, 4, 11

[57] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018. 6

Supplementary Material

A. Characteristics Matrix
We compared various crucial characteristics of cutting-edge NeRF methods and our Tri-MipRF in Tab. 3, including quality

aspect, e.g., anti-aliasing, and efficiency aspect, e.g., fast reconstruction, real-time rendering, and compact model. We can see
that, except for our Tri-MipRF, none of them can support anti-aliasing, fast reconstruction, real-time rendering, and compact
model, at the same time. These positive characteristics are enabled by our Tri-Mip encoding and cone casting.

Method Anti-aliasing Fast Reconstruction Real-time Rendering Compact Model

NeRF [35] ✗ ✗ ✗ ✓
MipNeRF [3] ✓ ✗ ✗ ✓
Instant-ngp [37] ✗ ✓ ✓– ✓
TensoRF [9] ✗ ✓– ✓– ✓
PlenOctrees [56] ✗ ✗ ✓ ✗
Plenoxels [14] ✗ ✓ ✓– ✗
Tri-MipRF (ours) ✓ ✓ ✓ ✓

Table 3. Characteristics matrix of cutting-edge NeRF methods and ours. “✓” means “yes”, “✓–” means “moderate”, and “✗” means “no”.

B. Model Details
B.1. Tiny MLP

The goal of the tiny MLP is to nonlinearly map the feature vector f produced by the Tri-Mip encoding and the view
direction d to density τ and color c of the sampled sphere S. The feature vector f has a dimension of 48 since the mipmaps
M in Tri-Mip encoding has a shape of 512 × 512 × 16 as described in Sec.4.1 of the main paper. The first two layers
of the MLP take f as input and produce the density τ and a geometric feature fgeo with a dimension of 15. And the view
direction d is encoded by the spherical harmonics basis and then fed into the last three layers the MLP together with the fgeo
to estimate the final view-dependent color c, which is similar to [37]. The width of the tiny MLP is empirically set to 128.
The activation function of all the layers is the ReLU, except for the output layer of density τ , where we adopt the truncated
exponential function followed [37]. This shallow MLP is implemented with tiny-cuda-nn that is well-optimized for fused and
half-precision MLP.

B.2. Optimization
The optimizable parameters of our Tri-MipRF include the model weights Θ of the tiny MLP and the mipmaps M in the

Tri-Mip encoding. The model weights Θ is initialized by the method proposed in [18], while the mipmaps M is initialized by
a uniform distribution of the interval [−0.01, 0.01] to encourage the sparsity of M. We employ the AdamW optimizer [31]
to train Θ and M, where we set base learning rate for Θ and scale up the base learning rate 10× for M since M is a direct
representation the reconstructed scene. We set the base learning rate to 2 × 10−3 and scale it up 0.6× at steps 12K, 18K,
20K, and 22K, while the total number of iteration is 25K. And followed [37], we adopt the dynamic batch-size strategy that
keep the total number of spheres in a batch to be roughly 256K. We will release our source code for better reproducibility
upon publication.

C. Detailed Results
Multi-scale Blender Dataset To demonstrate more detailed per-scene results of our Tri-MipRF, compared with other
cutting-edge methods, we provide quantitative results of them under three metrics in Tab. 4. We can see our Tri-MipRF
outperforms all the other methods on almost all the scenes. Visual comparisons of the renderings from Instant-ngp, Instant-ngp
↑5×, and our Tri-MipRF can be found in Fig. 8 and Fig. 9. Our method consistently renders more fine-grained and anti-aliased
images compared with Instant-ngp and Instant-ngp ↑5×. The aliasing artifacts are not easy to be observed in still pictures, so
readers are highly recommended to watch the supplemental video for better evaluation.

Single-scale Blender Dataset To show more detailed per-scene results of our Tri-MipRF, compared with other cutting-edge
methods, on the single-scale Blender dataset, we provide quantitative results of them under three metrics in Tab. 5. Even the

PSNR
chair drums ficus hotdog lego materials mic ship Average

NeRF w/o Larea 29.92 23.27 27.15 32.00 27.75 26.30 28.40 26.46 27.66
NeRF [35] 33.39 25.87 30.37 35.64 31.65 30.18 32.60 30.09 31.23
MipNeRF [3] 37.14 27.02 33.19 39.31 35.74 32.56 38.04 33.08 34.51
Plenoxels [14] 32.79 25.25 30.28 34.65 31.26 28.33 31.53 28.59 30.34
TensoRF [9] 32.47 25.37 31.16 34.96 31.73 28.53 31.48 29.08 30.60
Instant-ngp [37] 32.95 26.43 30.41 35.87 31.83 29.31 32.58 30.23 31.20
Instant-ngp ↑5× 34.15 26.79 31.50 36.47 32.51 29.49 33.81 30.78 31.94
Tri-MipRF w/o M 33.09 26.85 31.07 36.08 32.09 29.85 32.66 30.17 31.48
Tri-MipRF (Ours) 37.72 28.55 33.77 39.96 36.51 32.35 38.06 33.59 35.06

SSIM
chair drums ficus hotdog lego materials mic ship Average

NeRF w/o Larea 0.944 0.891 0.942 0.959 0.926 0.934 0.958 0.861 0.927
NeRF [35] 0.971 0.932 0.971 0.979 0.965 0.967 0.980 0.900 0.958
MipNeRF [3] 0.988 0.945 0.984 0.988 0.984 0.977 0.993 0.922 0.973
Plenoxels [14] 0.968 0.929 0.972 0.976 0.964 0.959 0.979 0.892 0.955
TensoRF [9] 0.967 0.930 0.974 0.977 0.967 0.957 0.978 0.895 0.956
Instant-ngp [37] 0.971 0.940 0.973 0.979 0.966 0.959 0.981 0.904 0.959
Instant-ngp ↑5× 0.979 0.943 0.978 0.982 0.972 0.959 0.985 0.909 0.963
Tri-MipRF w/o M 0.971 0.941 0.974 0.980 0.967 0.960 0.980 0.901 0.959
Tri-MipRF (Ours) 0.990 0.957 0.986 0.989 0.986 0.972 0.992 0.935 0.976

LPIPS
chair drums ficus hotdog lego materials mic ship Average

NeRF w/o Larea 0.035 0.069 0.032 0.028 0.041 0.045 0.031 0.095 0.052
NeRF [35] 0.028 0.059 0.026 0.024 0.035 0.033 0.025 0.085 0.044
MipNeRF [3] 0.011 0.044 0.014 0.012 0.013 0.019 0.007 0.062 0.026
Plenoxels [14] 0.040 0.070 0.032 0.037 0.038 0.055 0.036 0.104 0.051
TensoRF [9] 0.042 0.075 0.032 0.035 0.036 0.063 0.040 0.112 0.054
Instant-ngp [37] 0.035 0.066 0.029 0.028 0.040 0.051 0.032 0.095 0.047
Instant-ngp ↑5× 0.025 0.059 0.023 0.025 0.031 0.049 0.023 0.089 0.041
Tri-MipRF w/o M 0.036 0.066 0.030 0.028 0.039 0.051 0.032 0.099 0.048
Tri-MipRF (Ours) 0.010 0.042 0.014 0.012 0.012 0.029 0.008 0.062 0.024

Table 4. Quantitative per-scene results on the test set of the multi-scale Blender dataset. For each scene, we report the arithmetic mean of
each metric averaged over the four scales used in the dataset. The best, second-best, and third-best results are marked in red, orange, and
yellow, respectively.

single-scale Blender dataset observes the scene at a roughly constant distant, where the point-sampling-based methods would
not suffers from the scale issue, our Tri-MipRF still outperforms them in terms all the three metrics. It demonstrates the high
applicability of our method for reconstructing objects at a constant or varying observing distances.

PSNR
chair drums ficus hotdog lego materials mic ship Average

SRN [46] 29.96 17.18 20.73 26.81 20.85 18.09 26.85 20.60 22.26
LLFF [34] 28.72 21.13 21.79 31.41 24.54 20.72 27.48 23.22 24.88
Neural Volumes [29] 28.33 22.58 24.79 30.71 26.08 24.22 27.78 23.93 26.05
Plenoxels [14] 33.98 25.35 31.83 36.43 34.10 29.14 33.26 29.62 31.71
NeRF [35] 34.17 25.08 30.39 36.82 33.31 30.03 34.78 29.30 31.74
DVGO [47] 34.09 25.44 32.78 36.74 34.64 29.57 33.20 29.13 31.95
MipNeRF [3] 35.14 25.48 33.29 37.48 35.70 30.71 36.51 30.41 33.09
TensoRF [9] 35.76 26.01 33.99 37.41 36.46 30.12 34.61 30.77 33.14
Instant-ngp [37] 35.00 26.02 33.51 37.40 36.39 29.78 36.22 31.10 33.18
Tri-MipRF (Ours) 36.10 26.59 34.51 38.54 36.15 30.73 37.75 28.78 33.65

SSIM
chair drums ficus hotdog lego materials mic ship Average

SRN [46] 0.910 0.766 0.849 0.923 0.809 0.808 0.947 0.757 0.846
LLFF [34] 0.948 0.890 0.896 0.965 0.911 0.890 0.964 0.823 0.911
Neural Volumes [29] 0.916 0.873 0.910 0.944 0.880 0.888 0.946 0.784 0.893
Plenoxels [14] 0.977 0.933 0.976 0.980 0.976 0.949 0.985 0.890 0.958
NeRF [35] 0.975 0.925 0.967 0.979 0.968 0.953 0.987 0.869 0.953
DVGO [47] 0.977 0.930 0.978 0.980 0.976 0.951 0.983 0.879 0.957
MipNeRF [3] 0.981 0.932 0.980 0.982 0.978 0.959 0.991 0.882 0.961
TensoRF [9] 0.985 0.937 0.982 0.982 0.983 0.952 0.988 0.895 0.963
Instant-ngp [37] 0.979 0.937 0.981 0.982 0.982 0.951 0.990 0.896 0.963
Tri-MipRF (Ours) 0.985 0.939 0.983 0.984 0.982 0.953 0.992 0.879 0.963

LPIPS
chair drums ficus hotdog lego materials mic ship Average

SRN [46] 0.106 0.267 0.149 0.100 0.200 0.174 0.063 0.299 0.170
LLFF [34] 0.064 0.126 0.130 0.061 0.110 0.117 0.084 0.218 0.114
Neural Volumes [29] 0.109 0.214 0.162 0.109 0.175 0.130 0.107 0.276 0.160
Plenoxels [14] 0.031 0.067 0.026 0.037 0.028 0.057 0.015 0.134 0.049
NeRF [35] 0.026 0.071 0.032 0.030 0.031 0.047 0.012 0.150 0.050
DVGO [47] 0.027 0.077 0.024 0.034 0.028 0.058 0.017 0.161 0.053
MipNeRF [3] 0.021 0.065 0.020 0.027 0.021 0.040 0.009 0.138 0.043
TensoRF [9] 0.022 0.073 0.022 0.032 0.018 0.058 0.015 0.138 0.047
Instant-ngp [37] 0.022 0.071 0.023 0.027 0.017 0.060 0.010 0.132 0.045
Tri-MipRF (Ours) 0.016 0.066 0.020 0.021 0.016 0.052 0.008 0.136 0.042

Table 5. Quantitative per-scene results on the test set of the single-scale Blender dataset. The best, second-best, and third-best results are
marked in red, orange, and yellow, respectively.

Ch
ai
r

Dr
um

s
Fi
cu
s

Instant-ngp Instant-ngp ↑!× Tri-MipRF Ground	Truth

(a)

H
ot
do
g

Le
go

M
at
er
ia
ls

(b)

M
ic

Sh
ip

(c)

Figure 8. Qualitative full-resolution rendering results of Instant-ngp [37], Instant-ngp ↑5×, and our Tri-MipRF on the multi-scale Blender
dataset. We show the rendered depth map under the RGB renderings.

Ch
ai
r

Dr
um

s
Fi
cu
s

Instant-ngp Instant-ngp ↑!× Tri-MipRF Ground	Truth

H
ot
do
g

Le
go

M
at
er
ia
ls

M
ic

Sh
ip

Figure 9. Qualitative 1/8 resolution rendering results of Instant-ngp [37], Instant-ngp ↑5×, and our Tri-MipRF on the multi-scale Blender
dataset.

